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Abstract

In this paper the global–local higher-order theory is used to study the free vibration of laminated composite and

sandwich plates. This global–local theory can satisfy the free surface conditions and the geometric and stress continuity

conditions at interfaces, and the number of unknowns is independent of the layer numbers of the laminate. Based on the

higher-order theory, a refined three-noded triangular element satisfying C1 weak-continuity conditions is presented. For

general laminated composite plates, results obtained from present global–local higher-order theory have been found in

good agreement with those obtained from three-dimensional elasticity theories. Moreover, this theory is still suitable for

analysis of laminated plates with arbitrary layouts and soft-core sandwich plates whereas numerical results show that the

global higher-order and first-order theory overestimate natural frequency for these special structures. This theory cannot

only calculate the natural frequencies but can accurately predict the modal stress distributions in the thickness direction

without any smooth techniques.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite and sandwich plates are being increasingly used in advanced aerospace structures
because they can exhibit many favorable characteristics such as high specific modulus and strength and low
specific density. To use them efficiently, it is necessary to develop appropriate models capable of accurately
predicting their structural and dynamical behavior.

Due to ignoring the transverse shear deformation and overestimating the natural frequency, the classical
laminate plate theory becomes inadequate for the analysis of thick laminated and sandwich plates. Therefore it
is necessary to consider the effect of transverse shear deformation in the study of thick laminated
structures. To take into account the effects of shear deformation, the first-order shear deformation theories
[1,2] are firstly developed whereas the accuracy of solutions of this theory will be strongly dependent on the
shear correction factors. In order to overcome the limitations of first-order shear deformation theory,
the global higher-order theories that include higher-order terms in Taylor’s expansions of the displacement in
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the thickness direction have been developed by Reddy [3], Frederiksen [4], Maiti and Sinha [5], Kant and
Swaminathan [6,7], Lee et al. [8] and Matsunaga [9–11]. In addition, based on Reddy’s higher-order theories,
finite element method [12] has been also proposed. Compared with first-order theories, the higher-order
theories are more accurate in predicting natural frequencies for general laminated plates [6,7]. Therefore,
prevalent view is that the global higher-order theories are enough for analyzing dynamical problems of
laminated structures.

However, by further research, it is found that the global higher-order theories also overestimate natural
frequency for laminated composite plates with different thickness and materials at each ply [13] and soft-core
sandwich plates [14] because these higher-order theories violate continuity conditions of the transverse stress
components. To overcome the drawbacks of global higher-order theories, the layerwise theories [15–18] have
been used to perform free vibration analysis of laminated plates. Subsequently mixed layerwise models [19,20]
have been also proposed, which assumed that the transverse stresses and displacement unknowns in each layer
are two independent fields. It should be shown that the layerwise models are accurate enough in predicting
natural frequencies of arbitrary laminated structures whereas these models are computationally expensive
because the number of unknown functions depends on the number of layers of the laminate. On the other
hand, Kapuria et al. [13] present a zig-zag theory of laminated beams to assess the effect of laminate layouts on
the accuracy whereas the research on laminated and sandwich plates is not given using this zig-zag theory. To
the best of the author’s knowledge, other investigations on the free vibration of sandwich plates cannot be
found using zig-zag theories.

To overcome the limitations of the global higher-order theories and layerwise theories, this paper is to use
the global–local theory to predict dynamical response of laminated composite plates with arbitrary layout and
soft-core sandwich plates. The global–local higher-order theory is firstly developed by Li and Liu [21] and
further study on the global–local theory has been presented by Wu et al. [22,23]. This theory possesses the
accuracy of layerwise theory and efficiency of global higher-order theory, moreover, which satisfies
displacements and transverse shear stresses continuity conditions at the interfaces. It is most important that
the in-plane stresses and transverse shear stresses can be accurately predicted by the direct constitutive
equation approach without any smooth techniques. Based on the global–local higher-order theory, the refined
triangular plate element is presented. Due to second derivatives of transverse displacement appearing in
higher-order shear deformation theory, the interelement C1 continuity conditions should been imposed.
In order to satisfy this C1 continuity conditions, the refined triangular nonconforming methods [24,25] have
been employed in this paper.
2. Global–local higher-order theory review

In this section, a global–local higher-order theory for laminated composite and sandwich plates is briefly
reviewed. The detailed description can be found in the previous works [21–23]. The starting displacement field
can be written as follows:

ukðx; y; zÞ ¼ uGðx; y; zÞ þ ūk
Lðx; y; zÞ þ ûk

Lðx; y; zÞ, (1a)

vkðx; y; zÞ ¼ vGðx; y; zÞ þ v̄k
Lðx; y; zÞ þ v̂k

Lðx; y; zÞ, (1b)

wkðx; y; zÞ ¼ wGðx; y; zÞ, (1c)

where uG, vG and wG are global components of displacement expansion; ūk
L and v̄k

L are of two-term local
groups; ûk

L and v̂k
L are of one-term local group; the superscript k represents the layer order of laminated plates.

The global coordinates associated with the plate are x, y, z. The reference plane (z ¼ 0) is taken at the mid-
plane of the laminate. The local coordinates for a layer are denoted by x, y, zk where �1pzkp1. The relations
between global coordinate and local coordinate can be seen in Fig. 1.

These global components may be written as

uGðx; y; zÞ ¼ u0ðx; yÞ þ zu1ðx; yÞ þ z2u2ðx; yÞ þ z3u3ðx; yÞ, (2a)
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Fig. 1. Schematic figure for the laminate segment.
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vGðx; y; zÞ ¼ v0ðx; yÞ þ zv1ðx; yÞ þ z2v2ðx; yÞ þ z3v3ðx; yÞ, (2b)

wGðx; y; zÞ ¼ w0ðx; yÞ. (2c)

The local components can be written as

ūk
Lðx; y; zÞ ¼ zkuk

1ðx; yÞ þ z2kuk
2ðx; yÞ, (3a)

v̄k
Lðx; y; zÞ ¼ zkvk

1ðx; yÞ þ z2kvk
2ðx; yÞ, (3b)

ûk
Lðx; y; zÞ ¼ z3kuk

3ðx; yÞ, (3c)

v̂k
Lðx; y; zÞ ¼ z3kvk

3ðx; yÞ, (3d)

where

zk ¼ akz� bk; ak ¼
2

zkþ1 � zk

; bk ¼
zkþ1 þ zk

zkþ1 � zk

.

By enforcing free conditions of the transverse shear stresses on the top and bottom surfaces, and
displacements and transverse shear stresses continuity conditions at the interfaces, the final displacement field
reduces to the following form:

uk ¼ u0 þ Fk
1ðzÞu

1
1 þ Fk

2ðzÞu1 þ Fk
3ðzÞu2 þ Fk

4ðzÞu3 þ Fk
5w0;x, (4a)

vk ¼ v0 þCk
1ðzÞu

1
1 þCk

2ðzÞu1 þCk
3ðzÞu2 þCk

4ðzÞu3 þCk
5w0;x, (4b)

wk ¼ w0, (4c)

where Fk
i and ck

i are the function of material constants and thickness of laminated plate. The expression of Fk
i

and ck
i is found in Refs. [22,23].

3. The transverse displacement function of element

The global–local higher-order theory possesses first and second derivatives of transverse displacement w in
the strain components. Thus the C0 and C1 continuity displacement functions should be used. To satisfy these
continuity conditions, the famous nine-parameter nonconforming element BCIZ [26] satisfied C0 continuity
condition and the refined nonconforming element method developed by Chen Wanji et al. [24,25] are used in
the present study, respectively.

Based on the refined element method [24], the displacement function w� satisfied C1 weak-continuity
condition may be expressed as

w� ¼ w0 þ Pa (5)

where w0 is a nonconforming displacement function; P ¼ 1
2

x2 1
2
y2 xy

� �
; a is unknown parameter.
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Following partial integration is used:Z
ve

q2w�

qxiqxj

dx dy ¼

I
qve

q ~w
qxi

nxj ds ði; j ¼ 1; 2Þ, (6)

where ~w is the interpolation of displacement on the element boundary, which relaxes conforming condition;
nxj is the cosines of the vector normal to the coordinate xj.

Substituting Eq. (5) into Eq. (6), the following expression can be obtained:Z
ve

DTw� dx dy ¼

Z
ve

DTw0 þ a
� �

dx dy ¼ D B0qþ að Þ ¼

I
ve

RT
c ~u ds (7)

where,

DT ¼
q2

qx2

q2

qy2

q2

qxqy

( )T

; DTw0 ¼ Bq; B0 ¼
1

D

Z
ve

B dx dy;

D is element area;

RT
c ¼

‘2 �‘m

m2 ‘m

‘m ð‘2 �m2Þ=2

2
64

3
75; ~u ¼

q ~w
qn
q ~w
qs

8>><
>>:

9>>=
>>;,

where ‘ and m are the cosines of the vector normal on the boundaries.
By simplifying, the following equation can be written asI

ve

RT
c ~u ds ¼ DBcq. (8)

By using Eqs. (7) and (8), the unknown parameter a may be obtained directly as

a ¼ ðBc � B0Þq. (9)

Therefore the displacement function w� satisfied C1 weak-continuity conditions can be given as

w� ¼ w0 þ PðBc � B0Þq. (10)

4. The refined three-node triangular laminated plate element

4.1. The element transverse displacement function satisfied C0 continuity condition

The famous nine-parameter nonconforming element BCIZ [26] satisfies C0 continuity condition, which may
be written as follows:

w0 ¼ Fq, (11)

where

F ¼ F i;Fxi;F yi

� �
; q ¼ fw0

i ;w
0
xi;w

0
yig

T,

F i ¼ Li þ L2
i Lj þ L2

i Lk � LiL
2
j � LiL

2
k; F xi ¼ ckL2

i Lj � cjL
2
i Lk þ ðck � cjÞLiLjLk=2,

Fyi ¼ bjL
2
i Lk � bkL2

i Lj þ ðbj � bkÞLiLjLk=2; Li ¼
ai þ bixþ ciy

2D
; ai ¼ xjyk � xkyj ,

bi ¼ yj � yk; ci ¼ xk � xjði ¼ 1� 3Þ.
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Second order derivatives of transverse displacement w0 may be given as

q2w0

qx2

q2w0

qy2

q2w0

qxqy

( )T

¼ Bq, (12)

where, B ¼ [B1 B2 B3] and

Bi ¼

q2Fi

qx2

q2Fxi

qx2

q2F yi

qx2

q2Fi

qy2

q2Fxi

qy2

q2F yi

qy2

q2Fi

qxqy

q2Fxi

qxqy

q2F yi

qx@y

2
666666664

3
777777775
ði ¼ 1� 3Þ.

4.2. The element transverse displacement function satisfied C1 weak-continuity condition

In order to obtain the shape function of element transverse displacement satisfied C1 weak-continuity
condition, the matrix Bc have to be given according to Eq. (10). Here the matrix Bc can be given as

Bc ¼ ½Bc1 Bc2 Bc3 �. (13)

Along boundary 1–2 and boundary 3–1, ðq ~w=qnÞ is obtained by linear interpolation, ðq ~w=qsÞ is obtained by
quadratic interpolation. After integration, we have

Bc1 ¼

‘1m1 � ‘3m3
1
2
ð‘21y21 þ ‘

2
3y13Þ

1
2
ð‘21x12 þ ‘

2
3x31Þ

‘3m3 � ‘1m1
1
2
ðm2

1y21 þm2
3y13Þ

1
2
ðm2

1x12 þm2
3x31Þ

m2
1 �m2

3
1
2
ð‘21x12 þ ‘

2
3x31Þ

1
2
ðm2

1y21 þm2
3y13Þ

2
664

3
775, (14)

where, ‘i;mi are the cosines of the vector normal to the ith boundary. xij ¼ xi � xj ; yij ¼ yi � yj , where xi and
yi are the coordinates of node i.

Bc2 and Bc3 can be obtained by the permutation of the subscript. According to Eq. (10), the shape function
F� can be obtained as

F� ¼ F þ PðBc � B0Þ. (15)

4.3. The displacement functions of triangular element

The primary displacement unknowns are expressed in terms of nodal variables and shape functions as
follows:

u0 ¼
X3
i¼1

Liu0i; u1
1 ¼

X3
i¼1

Liu
1
1i; uj ¼

X3
i¼1

Liuji,

v0 ¼
X3
i¼1

Liv0i; v11 ¼
X3
i¼1

Liv
1
1i; vj ¼

X3
i¼1

Livji,

w0 ¼
X3
i¼1

ðFiw0;i þ Fxiw0;xi þ Fyiw0;yiÞ,

w� ¼
X3
i¼1

ðF�i w0;i þ F�xiw0;xi þ F�yiw0;yiÞ; ð16Þ

where, j ¼ 123 and Li is area coordinate.
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4.4. The strain, stiffness and mass matrix of three-node triangular element

According to linear strain–displacement relations, the strain for the kth layer can be written as follows:

�k ¼ quk ¼ ½B1 B2 B3�d
e, (17)

where, de
¼ ½de

1 de
2 de

3�
T

de
i ¼ ½ u0i v0i w0i u1

1i u1i u2i u3i w0xi v11i v1i v2i v3i w0yi �
T ði ¼ 1� 3Þ.

½q� ¼

q
qx

0
q
qy

@

qz
0

0
q
qy

q
qx

0
q
qz

0 0 0
q
qx

q
qy

2
66666664

3
77777775

T

.

The formation of strain matrix B of the refined nonconforming element has been established. By using the
following equation, the element stiffness matrix Ke may be given as

½Ke� ¼
Xn

i¼1

Z i

i�1

ZZ
BTQiB dx dy

� �
dz. (18)

Using Hamilton’s principle, the equation of motion for an element can be obtained as follows:

½Me�€d
e
þ ½Ke�de

¼ 0, (19)

where [Me] is the element mass matrix and can be written as

½Me� ¼

Z
Ae

Z h=2

�h=2
½N�T½P�½N� dz dA (20)

in which the matrix [N] and [P] can be presented, respectively:

½N� ¼ ½N1 N2 N3�, (21)

where

Ni ¼

Li 0 0 0 0 0 0 0 0 0 0 0 0

0 Li 0 0 0 0 0 0 0 0 0 0 0

0 0 Fi 0 0 0 0 Fxi 0 0 0 0 F yi

0 0 0 Li 0 0 0 0 0 0 0 0 0

0 0 0 0 Li 0 0 0 0 0 0 0 0

0 0 0 0 0 Li 0 0 0 0 0 0 0

0 0 0 0 0 0 Li 0 0 0 0 0 0

0 0 Fi;x 0 0 0 0 F xi;x 0 0 0 0 Fyi;x

0 0 0 0 0 0 0 0 Li 0 0 0 0

0 0 0 0 0 0 0 0 0 Li 0 0 0

0 0 0 0 0 0 0 0 0 0 Li 0 0

0 0 0 0 0 0 0 0 0 0 0 Li 0

0 0 Fi;y 0 0 0 0 Fxi;y 0 0 0 0 F yi;y

2
6666666666666666666666666664

3
7777777777777777777777777775

ði ¼ 1� 3Þ,
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½P� ¼ rðzÞ

1 0 0 Fk
1 Fk

2 Fk
3 Fk

4 Fk
5 0 0 0 0 0

0 1 0 0 0 0 0 0 Ck
1 Ck

2 Ck
3 Ck

4 Ck
5

0 0 1 0 0 0 0 0 0 0 0 0 0

Fk
1 0 0 Fk

1F
k
1 Fk

1F
k
2 Fk

1F
k
3 Fk

1F
k
4 Fk

1F
k
5 0 0 0 0 0

Fk
2 0 0 Fk

2F
k
1 Fk

2F
k
2 Fk

2F
k
3 Fk

2F
k
4 Fk

2F
k
5 0 0 0 0 0

Fk
3 0 0 Fk

3F
k
1 Fk

3F
k
2 Fk

3F
k
3 Fk

3F
k
4 Fk

3F
k
5 0 0 0 0 0

Fk
4 0 0 Fk

4F
k
1 Fk

4F
k
2 Fk

4F
k
3 Fk

4F
k
4 Fk

4F
k
5 0 0 0 0 0

Fk
5 0 0 Fk

5F
k
1 Fk

5F
k
2 Fk

5F
k
3 Fk

5F
k
4 Fk

5F
k
5 0 0 0 0 0

0 Ck
1 0 0 0 0 0 0 Ck

1C
k
1 Ck

1C
k
2 Ck

1C
k
3 Ck

1C
k
4 Ck

1C
k
5

0 Ck
2 0 0 0 0 0 0 Ck

2C
k
1 Ck

2C
k
2 Ck

2C
k
3 Ck

2C
k
4 Ck

2C
k
5

0 Ck
3 0 0 0 0 0 0 Ck

3C
k
1 Ck

3C
k
2 Ck

3C
k
3 Ck

3C
k
4 Ck

3C
k
5

0 Ck
4 0 0 0 0 0 0 Ck

4C
k
1 Ck

4C
k
2 Ck

4C
k
3 Ck

4C
k
4 Ck

4C
k
5

0 Ck
5 0 0 0 0 0 0 Ck

5C
k
1 Ck

5C
k
2 Ck

5C
k
3 Ck

5C
k
4 Ck

5C
k
5

2
6666666666666666666666666664

3
7777777777777777777777777775

,

(22)

where r(z) is the mass density.
By assembling all the element mass and stiffness matrix with the global coordinates the dynamic equation

becomes

½M�€dþ ½K �d ¼ 0, (23)

where [M] and [K] are the global mass and stiffness matrix, respectively.
Eq. (23) may be expressed as the following eigenvalue problem:

ð½K � � O2½M�Þd ¼ 0 (24)

in which d is the displacement vector.
In the present study, the subspace iteration method [27] is adopted to solve the eigenvalue problem.
5. Numerical examples

In this section, several typical problems of laminated composite and sandwich plates have been analyzed.
The main aim is to show the importance of satisfying continuity conditions of displacement as well as the
transverse stresses for accurate vibration analysis of laminated and sandwich plates. The mesh configuration
can be seen in Fig. 2. The following boundary conditions have been used.

Simply supported boundary:

u0 ¼ w0 ¼ u1
1 ¼ u1 ¼ u2 ¼ u3 ¼

qw0

qx
¼ 0 at y ¼ 0;L,

v0 ¼ w0 ¼ v11 ¼ v1 ¼ v2 ¼ v3 ¼
qw0

qy
¼ 0 at x ¼ 0;L.

Clamped boundary:

u0 ¼ v0 ¼ w0 ¼ u1
1 ¼ u1 ¼ u2 ¼ u3 ¼

qw0

qx
¼ v11 ¼ v1 ¼ v2 ¼ v3 ¼

qw0

qy
¼ 0 at x ¼ 0;L and y ¼ 0;L.
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Fig. 2. A full square plate with meshes of m�m.
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5.1. Natural frequency of cross-ply (01/901/901/01) laminated composite plate with simply-free conditions at

two opposite edges is analyzed

The plate is simply supported along the edges parallel to the y-axis while the other two edges are free.
The following orthotropic material properties have been used

E1 ¼ 181 GPa; E2 ¼ 10:3 GPa; E3 ¼ E2; G12 ¼ G13 ¼ 7:17 GPa;

G23 ¼ 2:87 GPa v12 ¼ v13 ¼ 0:25; v23 ¼ 0:33; S ¼ L=h.

The material properties are assumed to be the same for all layers. The thickness of each layer is identified
and the mass density r ¼ 1578 kg=m3 is also taken to be uniform in the thickness direction. The natural
frequencies are normalized as O ¼ oLS

ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
.

In order to verify the present solutions, the convergence properties of the fundamental natural frequency of
square cross-ply laminated composite plates are presented in Table 1. Varying the length-to-thickness ratio,
the results are well converged up to the elasticity (exact) solutions [13]. Considering the accuracy and
computational efficiency, a 10� 10 mesh in a full plate is used in examples 5.1–5.4 although further refinement
of the mesh can obtain improved solutions.

Table 2 shows a comparison of the natural frequencies of laminated plates with other solutions. It is seen
that the solutions obtained from the present elements are very close to exact solutions. Moreover the results of
other theories are also acceptable.
5.2. Free vibration analysis of a five-ply plate (01/01/01/01/01) with simply-free conditions at two opposite edges

has been considered

This plate is simply supported along the edges parallel to the y-axis while the other two edges are free.
This laminated plate has ply of thickness 0.1h/0.25h/0.15h/0.2h/0.3h of materials 1/2/3/1/3 [13].
Material 1: E1 ¼ E2 ¼ E3 ¼ 6:9GPa, G12 ¼ G13 ¼ G23 ¼ 1:38GPa, v12 ¼ v13 ¼ v23 ¼ 0:25:
Material 2: E1 ¼ 224:25GPa, E2 ¼ E3 ¼ 6:9GPa, G12 ¼ G13 ¼ 56:58GPa,
G23 ¼ 1:38GPa, v12 ¼ v13 ¼ v23 ¼ 0:25:
Material 3: E1 ¼ 172:5GPa, E2 ¼ E3 ¼ 6:9GPa, G12 ¼ G13 ¼ 3:45GPa,
G23 ¼ 1:38GPa, v12 ¼ v13 ¼ v23 ¼ 0:25:
The mass density r ¼ 1578 kg=m3 is taken to be uniform in the thickness direction. The natural frequencies

are normalized as O ¼ oLS
ffiffiffiffiffiffiffiffiffiffiffi
r=E0

p
, herein E0 ¼ 6:9GPa and S ¼ L=h.
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Table 1

Convergence of the fundamental frequency

L/h Mesh density

4� 4 8� 8 10� 10 12� 12 Exact [13]

5 6.85948 6.82068 6.81613 6.81367 6.8060

10 9.49984 9.38814 9.37477 9.36754 9.3434

20 10.88367 10.71066 10.68966 10.67827 10.640

Table 2

Comparison of non-dimensional frequencies of a square plate

Modes (m) L/h Exact [13] Present ZIGT [13] TOT [13] FSDT [13]

1 5 6.8060 6.81613 6.81281 6.97615 7.44576

10 9.3434 9.37477 9.3434 9.47421 9.76385

20 10.640 10.68966 10.640 10.6932 10.7890

2 5 16.515 16.61537 16.72970 16.8783 18.2491

10 27.224 27.32669 27.25122 27.90460 29.78306

20 37.374 37.68099 37.374 37.89724 39.05583

3 5 26.688 27.42119 27.86227 27.14169 28.76966

10 46.419 46.66093 46.65109 47.62589 51.47867

20 71.744 72.61932 71.744 73.25062 77.05305

4 5 37.255 39.82295 40.90599 38.18637 41.16677

10 66.058 66.68984 66.91675 67.51127 72.99409

20 108.89 110.53756 108.99889 111.61225 119.12566

5 5 48.035 54.19840 56.15292 50.34068 49.28391

10 86.169 87.79897 88.409393 87.72004 94.18272

20 147.04 149.6296 147.48112 150.86304 162.4792

Table 3

Comparison of nondimensional frequencies of a square plate with different ply thickness and material property

Modes (m) L/h Exact [13] Present ZIGT [13] TOT [13] FSDT [13]

1 5 7.2551 7.58558 7.28412 10.75931 10.95520

10 10.152 10.4155 10.1723 12.17225 12.24331

20 11.924 12.0567 11.93592 12.63944 12.65136

2 5 18.837 19.11600 19.42095 31.68383 32.90824

10 29.020 29.91185 29.13608 43.03666 43.8202

20 40.606 41.73284 40.68721 48.68659 48.97083

3 5 32.769 34.08000 36.17698 54.10162 56.55929

10 50.832 52.50344 51.39115 83.16115 85.65192

20 76.577 79.68518 76.80673 103.60868 104.83391

4 5 47.602 51.87966 58.16964 76.68682 80.01896

10 75.349 75.65994 77.68482 126.73702 131.63470

20 116.08 119.9550 116.54432 172.14664 175.2808

5 5 61.289 73.08509 85.37558 99.47205 103.14938

10 102.30 105.61114 108.6426 171.4548 178.8204

20 158.83 165.86774 159.30649 249.52193 255.7163

W. Zhen, C. Wanji / Journal of Sound and Vibration 298 (2006) 333–349 341
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Fig. 3. Comparison of the corresponding errors for all theories (L=h ¼ 5).

Fig. 4. Comparison of the corresponding errors for all theories (L=h ¼ 10).
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In the second example, a laminated composite plate with different thickness and materials at each ply is
analyzed. The present normalized natural frequencies are compared with results obtained from other models
in Table 3. It can be found that the present results are in good agreement with the exact solutions whereas the
third-order (TOT) and first-order (FSDT) theory overestimate the frequency. However, for some higher
modes, the solutions from present elements are less accurate because present theory violates the interlaminar
continuity for transverse normal stress. Transverse normal stress effects on dynamical response of
multilayered plates have been studied in detailed by Carrear [31]. In order to clearly compare the present
theory with other theories, the corresponding errors are plotted in Figs. 3 and 4. It should be shown that for
higher modes, the ZIGT in Fig. 3 are still less accurate than the present theory, which is based on the zig-zag
one-dimensional theory of laminated beams.
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5.3. Natural frequency of cross-ply laminated composite plate with simply supported edges is analyzed

The material properties of the individual layers are chosen as follows:

E1=E2 ¼ open; E3 ¼ E2; G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:5E2; v12 ¼ v13 ¼ v23 ¼ 0:25.

The material properties are assumed to be the same for all layers and the fiber orientations is alternately
used between 01 and 901 with respect to the x-axis. The thickness of each layer is identified and the mass
density r is also taken to be uniform in the thickness direction. The natural frequencies are normalized as
O ¼ oh

ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
.

In this example, both symmetric and antisymmetric laminates with respect to middle plane have been
analyzed. Thereinto, the antisymmetric laminated plates have even number of layers and the 01 and layers are
at the bottom and upper surfaces of the laminates, respectively. Firstly, the effects of numbers of layers and
the degree of orthotropy of individual layers on dimensionless lowest frequency have been studied. These
results are shown in Table 4, which are also compared with the previously published results. It is observed that
the present results agree well with the 3D elasticity solutions [28]. At the same time, the fundamental
frequencies of laminated plates for various values of the length-to-thickness ratio are compared with those of
other models in Table 5. Numerical results show the present methods are suitable for thick laminated plates
as well as thin plates.

The interlaminar stresses are the important effects on the vibration response and delamination phenomena
of laminated composite plates, so the prediction of modal stresses under vibration is the important research
topics in the analysis of the mechanical behavior of laminated structures [9–11,14,18]. Herein, Figs. 5–8
present the modal displacements and modal stresses. Thereinto, modal transverse shear stresses in Fig. 8 are
computed directly from constitutive equation without using any postprocessing methods.
Table 4

Comparison of fundamental frequency of a simply supported plate with L=h ¼ 5 (O� 10)

No. of layers Solutions E1/E2

3 10 20 30 40

2 Exact [28] 2.5031 2.7938 3.0698 3.2705 3.4250

Present 2.5052 2.8003 3.0798 3.2838 3.4418

Matsunaga [9] 2.4929 2.7825 3.0576 3.2578 3.4120

3 Exact [28] 2.6474 3.2841 3.8241 4.1089 4.3006

Present 2.6344 3.2709 3.6978 3.9351 4.0928

Matsunaga [9] 2.6276 3.2664 3.6967 3.9362 4.0951

4 Exact [28] 2.6182 3.2578 3.7622 4.0660 4.2719

Present 2.6127 3.2513 3.7523 4.0532 4.2568

Matsunaga [9] 2.6021 3.2380 3.7400 4.0425 4.2477

5 Exact [28] 2.6587 3.4089 3.9792 4.3140 4.5374

Present 2.6495 3.3754 3.9133 4.2262 4.4349

Matsunaga [9] 2.6384 3.3621 3.9012 4.2156 4.4257

6 Exact [28] 2.6440 3.3657 3.9359 4.2783 4.5091

Present 2.6380 3.3612 3.9318 4.2747 4.5062

Matsunaga [9] 2.6265 3.3435 3.9101 4.2505 4.4800

9 Exact [28] 2.6640 3.4432 4.0547 4.4210 4.6679

Present 2.6559 3.4273 4.0271 4.3853 4.6271

Matsunaga [9] 2.6452 3.4143 4.0157 4.3762 4.6198

10 Exact [28] 2.6583 3.4250 4.0337 4.4011 4.6498

Present 2.6511 3.4183 4.0259 4.3923 4.6406

Matsunaga [9] 2.6403 3.4044 4.0125 4.3802 4.6294
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Table 5

Comparison of lowest natural frequency with previously results (O� ðL=hÞ2; E1 ¼ 40E2)

Layers Solutions L/h

2 4 5 10 20 25 50 100

0/90/90/0 Present 5.4300 9.2406 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566

Wu et al. [18] 5.317 9.193 10.682 15.069 17.636 18.055 18.670 18.835

Matsunaga [9] 5.3211 9.1988 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352

Cho et al. [16] 5.923 — 10.673 15.066 17.535 18.054 18.670 18.835

Fig. 5. Modal displacement u/jujmax through thickness of four-layer plate (L=h ¼ 10=3).

Fig. 6. Modal in-plane stress sx/jsxjmax through thickness of four-layer plate (L=h ¼ 10=3).
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Fig. 7. Modal in-plane stress txy/jtxyjmax through thickness of four-layer plate (L=h ¼ 10=3).

Fig. 8. Modal transverse shear stress txz/jtxzjmax through thickness of four-layer plate (L=h ¼ 10=3).
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5.4. Free vibration analysis of a five-layer (01/901/core/01/901) sandwich plate has been presented in this

example

The ratio of thickness of core tc to thickness of face sheet tf has been used to be 10. The following material
properties are adopted [14]:

Face sheets: E1 ¼ 131GPa, E2 ¼ E3 ¼ 10:34GPa, G12 ¼ G23 ¼ 6:895GPa,

G13 ¼ 6:205 GPa; v12 ¼ v13 ¼ 0:22; v23 ¼ 0:49; r ¼ 1627 kg=m3,

Core (isotropic): E1 ¼ E2 ¼ E3 ¼ 6:89� 10�3 GPa, G12 ¼ G13 ¼ G23 ¼ 3:45� 10�3 GPa v12 ¼ v13 ¼

v23 ¼ 0, r ¼ 97 kg=m3.
The natural frequencies are normalized as O ¼ oL2ðr=E2Þ

1=2
f =h.

To further assess the range of applicability of the present global–local theory, a problem on soft-core
sandwich plates has been considered. Due to large difference in stiffness between the face sheets and the core
material, the analysis on sandwich plates needs a refined laminated plate theory.

The present solutions for moderately thick plate and thin plate are given in Table 6, which are also
compared with semi-analytical results obtained from mixed theories [14] and displacement-based analytical
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Fig. 9. Comparison of the corresponding frequencies for all theories (L=h ¼ 10).

Table 6

Comparison of non-dimensional frequencies of sandwich plate

L/h Modes Rao(LW)

[14]

Present Rao(ESL)

[14]

Kant et al.

[6]

Pandya,

Kant [6]

Reddy [6] Senthilnathan

et al. [6]

Whitney

Panano [6]

10 1,1 1.8480 1.94445 4.9624 4.8594 4.8519 7.0473 7.0473 13.8694

1,2 3.2196 3.37955 8.1934 8.0187 7.9965 11.9087 11.9624 30.6432

2,2 4.2894 4.59140 11.9867 10.2966 10.2550 15.2897 15.2897 41.5577

1,3 5.2236 5.52678 10.5172 11.7381 11.6809 17.3211 17.3698 50.9389

2,3 6.0942 6.51279 13.7488 13.4706 13.3889 19.8121 19.8325 58.3636

3,3 7.6762 8.43110 16.4514 16.1320 16.0039 23.5067 23.5067 71.3722

100 1,1 11.9401 11.9840 15.5480 15.5093 15.4646 15.9521 15.9521 16.2175

1,2 23.4017 23.3427 39.2652 39.0293 38.9232 42.2271 42.3708 44.7072

2,2 30.9432 31.8651 55.1512 54.7618 54.6330 60.1272 60.1272 64.5044

1,3 36.1434 36.5671 73.4951 72.7572 72.5925 83.9982 84.4251 94.9097

2,3 41.4475 42.2904 84.2919 83.4412 83.2699 96.3132 96.7159 108.9049

3,3 49.7622 50.0815 106.5897 105.3781 105.1807 124.2047 124.2047 143.7969
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results [6]. It can be found from Table 6 that the present results agree well with those obtained by mixed
layerwise model for thick (L=h ¼ 10) as well as thin (L=h ¼ 100) sandwich plate whereas other global higher-
and first-order theories overestimate the natural frequencies. The advantage of the global–local higher-order
theory can be found clearly by numerical comparison. At the same time, Figs. 9 and 10 show the clear
comparison of all results.

5.5. Free vibration analysis of the three-layer clamped plate (01/901/01) has been considered

The following material properties are adopted [29,30]:

E1=E2 ¼ 40; E3 ¼ E2; G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:5E2,

v12 ¼ v13 ¼ v23 ¼ 0:25; v21 ¼ 0:00625.

In this case, a and b are the length and width of laminated plate, respectively; h is the thickness of laminates.
The natural frequencies are normalized as O ¼ ðob2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrh=D0Þ

p
, where D0 ¼ E2h

3=12ð1� v12v21Þ.
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Fig. 10. Comparison of the corresponding frequencies for all theories (L=h ¼ 100).

Table 7

Comparison of natural frequency for a three-layer clamped plate (01/901/01)

a/b b/h Mode sequence number

1 2 3 4 5 6 7 8

1 5 Liew [29] 4.447 6.642 7.700 9.185 9.738 11.399 11.644 12.466

Present 4.540 6.524 8.178 9.473 9.492 11.769 12.395 12.904

10 Liew [29] 7.411 10.393 13.913 15.429 15.806 19.572 21.489 21.620

Jian et al. [30] 7.451 10.451 13.993 15.534 15.896 19.698 21.618 21.773

Present 7.484 10.207 14.340 14.863 16.070 19.508 20.716 22.489

20 Liew [29] 10.953 14.028 20.388 23.196 24.978 29.237 29.369 36.266

Jian et al. [30] 11.015 14.152 20.691 23.323 25.142 29.532 29.777 36.665

Present 11.003 14.064 20.321 23.498 25.350 29.118 29.679 36.624

100 Liew [29] 14.666 17.614 24.511 35.532 39.157 40.768 44.786 50.297

Jian et al. [30] 14.583 17.762 25.004 36.644 38.073 39.802 44.082 51.725

Present 14.601 17.812 25.236 37.168 38.528 40.668 45.724 53.271

2 5 Liew [29] 3.045 4.248 5.792 5.905 6.535 7.688 7.729 9.176

Present 2.953 4.288 5.595 6.096 6.446 7.796 8.053 9.005

10 Liew [29] 4.141 6.617 8.354 9.895 9.967 12.443 13.659 14.120

Jian et al. [30] 4.164 6.652 8.401 9.950 10.023 12.513 13.743 14.221

Present 4.119 6.705 8.240 9.916 10.212 12.671 14.066 14.082

20 Liew [29] 4.779 8.840 9.847 12.511 14.703 17.300 17.673 19.429

Jian et al. [30] 4.838 8.910 9.982 12.647 14.824 17.467 17.996 19.744

Present 4.813 8.954 9.968 12.768 14.960 17.764 18.041 19.993

100 Liew [29] 5.105 10.527 10.583 14.324 19.567 19.701 22.148 22.237

Jian et al. [30] 5.250 10.697 11.012 14.726 19.697 20.420 22.445 22.933

Present 5.144 10.407 10.929 14.706 18.954 20.799 22.205 23.703
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In this case, a 12� 12 mesh in a full plate is used and the solutions are presented for the rectangular clamped
plates with various thickness and aspect ratios, namely b/h and a/b. It is seen that the present solutions of the
global–local higher-order theory agree well with those of other theories [29,30] in Table 7.
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6. Conclusions

Natural frequencies of laminated composite and sandwich plates have been calculated by using the
global–local higher-order theory, and these results are compared with those previously published. These
comparisons revealed that the present theory can accurately predict natural frequencies of general laminated
plates. Moreover, this theory is still suitable for dynamical problems of laminated composite plates with
variational thickness and materials at each layer and soft-core sandwich plates. However, numerical results
show that for these special structures, the global higher- and first-order theories that violate continuity of
interlaminar stresses will encounter some difficulties and overestimate the natural frequencies.

On the other hand, the distribution of modal displacements and stresses in thickness direction has been also
presented in the ply level. Thereinto the modal transverse shear stresses have been calculated directly from the
constitutive equations without any postprocessing methods.
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